
GrAVity: A Massively Parallel Antivirus Engine

Giorgos Vasiliadis and Sotiris Ioannidis

Institute of Computer Science, Foundation for Research and Technology – Hellas,
N. Plastira 100, Vassilika Vouton, GR-700 13 Heraklion, Crete, Greece

{gvasil,sotiris}@ics.forth.gr

Abstract. In the ongoing arms race against malware, antivirus soft-
ware is at the forefront, as one of the most important defense tools in
our arsenal. Antivirus software is flexible enough to be deployed from
regular users desktops, to corporate e-mail proxies and file servers. Un-
fortunately, the signatures necessary to detect incoming malware number
in the tens of thousands. To make matters worse, antivirus signatures are
a lot longer than signatures in network intrusion detection systems. This
leads to extremely high computation costs necessary to perform match-
ing of suspicious data against those signatures.
In this paper, we present GrAVity, a massively parallel antivirus engine.
Our engine utilized the compute power of modern graphics processors,
that contain hundreds of hardware microprocessors. We have modified
ClamAV, the most popular open source antivirus software, to utilize our
engine. Our prototype implementation has achieved end-to-end through-
put in the order of 20 Gbits/s, 100 times the performance of the CPU-
only ClamAV, while almost completely offloading the CPU, leaving it
free to complete other tasks. Our micro-benchmarks have measured our
engine to be able to sustain throughput in the order of 40 Gbits/s. The
results suggest that modern graphics cards can be used effectively to
perform heavy-duty anti-malware operations at speeds that cannot be
matched by traditional CPU based techniques.

1 Introduction

The ever increasing amount of malicious software in todays connected world,
poses a tremendous challenge to network operators, IT administrators, as well as
ordinary home users. Antivirus software is one of the most widely used tools for
detecting and stopping malicious or unwanted software. For an effective defense,
one needs virus-scanning performed at central network traffic ingress points,
as well as at end-host computers. As such, anti-malware software applications
scan traffic at e-mail gateways and corporate gateway proxies, and also on edge
compute devices such as file servers, desktops and laptops. Unfortunately, the
constant increase in link speeds, storage capacity, number of end-devices and the
sheer number of malware, poses significant challenges to virus scanning applica-
tions, which end up requiring multi-gigabit scanning throughput.

Typically, a malware scanner spend the bulk of its time matching data
streams against a large set of known signatures, using a pattern matching al-
gorithm. Pattern matching algorithms analyze the data stream and compare it



against a database of signatures to detect known malware. The signature pat-
terns can be fairly complex, composed of different-size strings, wild-card char-
acters, range constraints, and sometimes recursive forms. Every year, as the
amount of malware grows, the number of signatures is increasing proportional,
exposing scaling problems of anti-malware products.

To come up with the large signature sets, most approaches rely on the quickly,
fast and accurate filtering of the “no-match” cases, based on the fact that the
majority of network traffic and files is not supposed to contain viruses [9]. Other
approaches are based on specialized hardware, like FPGAs and ASICs, to achieve
high performance [15, 14]. Such hardware solutions are very efficient and perform
quite well, however they are hard to program, complex to modify, and are usually
tied to a specific implementation.

In contrast, commodity graphics processing units (GPUs) have been proven
to be very efficient and highly effective at accelerating the pattern matching
operations of network intrusion detection systems (NIDS) [26, 21, 27]. Driven
by the ever-growing video game industry, modern GPUs have been constantly
evolving to ever more powerful and flexible stream processors, specialized for
computationally-intensive and highly parallel operations. The massive number
of transistors devoted to data processing, rather than data caching and flow
control, can be exploited to perform computations that up till now were handled
by the CPU.

In this work, we explore how the highly parallel capabilities of commodity
graphics processing units can be utilized to improve the performance of mal-
ware scanning programs and how they can assist and offload the CPU whenever
possible.

From a high-level view, malware scanning is divided into two phases. First,
all files are scanned by the GPU, using a combined DFA state machine that con-
tain only a prefix from each signature. This results in identifying all potentially
malicious files, but a number of clean files as well. The GPU then outputs a set of
suspect matched files and the corresponding offsets in those files. In the second
phase, all those files are rescanned using a full pattern matching algorithm.

The contributions of our work are:

– We have designed, implemented and evaluated a pattern matching algorithm
on modern GPUs. Our implementation could be adapted to any other multi-
core system, as well.

– We integrated our GPU implementation into ClamAV [12], the most popu-
lar and widely used open-source virus scanning software, proving that our
solution can be used in the real-world.

– We developed and implemented a series of system level optimizations to
improve end-to-end performance of our system.

– We implemented, experimented and analyzed our GPU-assisted virus scan-
ning application with various configurations and we show that modern GPUs
can effectively be used, in coordination with the CPU, to drastically improve
the performance of anti-malware applications.



Our prototype implementation, called GrAVity, achieved a scanning through-
put of 20 Gbits/s for binary files. This represents a speed-up factor of 100 from
the single CPU-core case. Also, in special cases, where data is cached on the
graphics card, the scanning throughput can reach 110 Gbits/s.

The rest of the paper is organized as follows. In Section 2, we present some
background on general-purpose GPU (GPGPU) programming and introduce
the related virus scanning architectures. The architecture and acceleration tech-
niques are presented in Section 3. The performance analysis and evaluation are
given in Section 4. The paper ends with an outline of related work in Section 5
and some concluding remarks in Section 6.

2 Background

In this section, we briefly describe the architecture of modern graphics cards
and the general-purpose computing functionality they provide for non-graphics
applications. We also discuss some general aspects of virus-scanning techniques.

2.1 GPU Programming

For our work we selected the NVIDIA GeForce 200 Series architecture, which of-
fers a rich programming environment and flexible abstraction models through the
Compute Unified Device Architecture (CUDA) SDK [18]. The CUDA program-
ming model extends the C programming language with directives and libraries
that abstract the underlying GPU architecture and make it more suitable for
general purpose computing. In contrast with standard graphics APIs, such as
OpenGL and DirectX, CUDA exposes several hardware features to the program-
mer. The most important of these features is the existence of convenient data
types, and the ability to access the DRAM of the device card through the general
memory addressing mode it provides. CUDA also offers highly optimized data
transfer operations to and from the GPU.

The GeForce 200 Series architecture, in accordance with its ancestors GeForce
8 (G80) and GeForce 9 (G90) Series, is based on a set of multiprocessors, each of
which contains a set of stream processors operating on SIMD (Single Instruction
Multiple Data) programs. When programmed through CUDA, the GPU can be
used as a general purpose processor, capable of executing a very high number of
threads in parallel.

A unit of work issued by the host computer to the GPU is called a kernel,
and is executed on the device as many different threads organized in thread

blocks. Each multiprocessor executes one or more thread blocks, with each group
organized into warps. A warp is a fraction of an active group, which is processed
by one multiprocessor in one batch. Each of these warps contains the same
number of threads, called the warp size, and is executed by the multiprocessor
in a SIMD fashion. Active warps are time-sliced: A thread scheduler periodically
switches from one warp to another to maximize the use of the multiprocessors
computational resources.



Stream processors within a processor share an instruction unit. Any control
flow instruction that causes threads of the same warp to follow different execution
paths reduces the instruction throughput, because different executions paths
have to be serialized. When all the different execution paths have reached a
common end, the threads converge back to the same execution path.

A fast shared memory is managed explicitly by the programmer among
thread blocks. The global, constant, and texture memory spaces can be read
from or written to by the host, are persistent across kernel launches by the same
application, and are optimized for different memory usages [18]. The constant
and texture memory accesses are cached, so a read from them costs much less
compared to device memory reads, which are not being cached. The texture
memory space is implemented as a read-only region of device memory.

2.2 Virus Scanning and ClamAV

ClamAV [12] is the most widely used open-source virus scanner. It offers client-
side protection for personal computers, as well as mail and file servers used
by large organizations. As of January 2010, it has a database of over 60,000
virus signatures, and consists of a core scanner library and various command-
line utilities. The database includes signatures for non-polymorphic viruses in
simple string format, and for polymorphic viruses in regular expression format
(polymorphic signatures).

The current version of ClamAV uses an optimized version of the Boyer-Moore
algorithm [3] to detect non-polymorphic viruses using simple fixed string signa-
tures. For polymorphic viruses, on the other hand, ClamAV uses a variant of the
classical Aho-Corasick algorithm [1].

The Boyer-Moore implementation in ClamAV, uses a shift-table to reduce
the number of times the Boyer-Moore routine is called. At start up, ClamAV
preprocess every signature and stores the shift value of every possible block
(arbitrarily choosing a block size of 3 bytes) to initialize a shift table. Then, at
any point in the input stream, ClamAV can determine if it can skip up to three
bytes by performing a quick hash on them. ClamAV also creates a hash table
based on the first three bytes of the signature and uses this table at run-time
when the shift table returns a match. Since this algorithm uses hash functions
on all bytes of a signature, it is only usable against non-polymorphic viruses.

The Aho-Corasick implementation uses a trie to store the automaton gen-
erated from the polymorphic signatures. The fixed string parts of each poly-
morphic signatures are extracted, and are used to build a trie. At the scanning
phase, the trie will be used to scan for all these fixed parts of each signature
simultaneously. For example, the signature ‘‘495243*56697275’’ contains two
parts, ‘‘495243’’ and ‘‘56697275’’, which are matched individually by the
Aho-Corasick algorithm. When all parts of a signature are found, ClamAV also
verifies the order and the gap between the parts, as specified in the signature.
To quickly perform a lookup in this trie, ClamAV uses a 256 element array for
each node. In the general case, the trie has a variable height, and all patterns
beginning with the same prefix are stored under the corresponding leaf node.



However, in order to simplify the trie construction, the height is restricted to
be equal to the size of the shortest part in the polymorphic signatures, which is
currently equal to two. Thus, the trie depth is fixed to two and all patterns are
stored at the same trie level. During the scanning phase, ClamAV scans an in-
put file and detects occurrences of each of the polymorphic signatures, including
partially and completely overlapping occurrences. The Aho-Corasick algorithm
has the desirable property that the processing time does not depend on the size
or number of patterns in a significant way.

The main reason that ClamAV uses both Boyer-Moore and Aho-Corasick is
that many parts in the polymorphic signatures are short, and they restrict the
maximum shift distance allowed (bounded by the shortest pattern) in the Boyer-
Moore algorithm. Matching the polymorphic signatures in Aho-Corasick avoid
this problem. Furthermore, compared with the sparse automaton representation
of the Aho-Corasick algorithm, the compressed shift table is a more compact
representation of a large number of non-polymorphic signatures in fixed strings,
so the Boyer-Moore algorithm is more efficient in terms of memory space.

3 Design and Implementation

GrAVity utilizes the GPU to quickly filter out the data segments that do not
contain any viruses. To achieve this, we have modified ClamAV, such that the
input data stream is initially scanned by the GPU. The GPU uses a prefix of
each virus signature to quickly filter-out clean data. Most data do not contain
any viruses, so such filtering is quite efficient as we will see in Section 4.

The overall architecture of GrAVity is shown in Figure 1. The contents of each
file are stored into a buffer in a region of main memory that can be transferred
via DMA into the memory of the GPU. The SPMD operation of the GPU is ideal
for creating multiple search engine instances that will scan for virus signatures
on different data in a massively parallel fashion. If the GPU detects a suspicious
virus, that is, there is prefix match, the file is passed to the verification module
for further investigation. If the data stream is clean, no further computation
takes place. Therefore, the GPU is employed as a first-pass high-speed filter,
before completing any further potential signature-matching work on the CPU.

3.1 Basic Mechanisms

At start-up, the entire signature set of ClamAV is preprocessed, to construct a
deterministic finite automaton (DFA). Signature matching using a DFA machine
has linear complexity as a function of the input text stream, which is very effi-
cient. Unfortunately, the number of virus signatures, as well as their individual
size is quire very large, so it may not be always feasible to construct a DFA
machine that will contain the complete signature set. As the number and size of
matching signatures increase, the size of the automaton also increases.

To overcome this, we chose to only use a portion from each virus signature.
By using the first n symbols from each signature, the height of the corresponding
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Fig. 1. GrAVity Architecture. Files are mapped onto pinned memory that can be
copied via DMA onto the graphics card. The matching engine performs a first-pass
filtering on the GPU and return potential true positives for further checking onto the
CPU.

DFA matching machine is limited to n, as shown in Figure 2. In addition, all
patterns that begin with the same prefix are stored under the same node, called
final node. In case the length of the signature pattern is smaller than the prefix
length, the entire pattern is added. A prefix may also contain special characters,
such as the wild-characters * and ?, that are used in ClamAV signatures to
describe a known virus.

At the scanning phase, the input data will be initially scanned by the DFA
running on the GPU. Obviously, the DFA may not be able to match an exact
virus signature inside a data stream, as in many cases the length of the signature
is longer than the length of the prefix we used to create the automaton. This
will be the first-level filtering though, designed to offload the bulk of the work
from the CPU, by drastically eliminating a significant portion of the input data
that need to be scanned.

It is clear that the longer the prefix, the fewer the number of false positives
at this initial scanning phase. As we will see in Section 4, using a value of 8 for
n, can result to less than 0.0001% of false positives in a realistic corpus of binary
files.

3.2 Parallelizing DFA matching on the GPU

During scan time, the algorithm moves over the input data stream one byte at
a time. For each byte, the scanning algorithm moves the current state appro-
priately. The pattern matching is performed byte-wise, meaning that we have
an input width of 8 bits and an alphabet size of 28 = 256. Thus, each state
will contain 256 pointers to other states, as shown in Figure 2. The size of the
DFA state machine is thus |#States| ∗ 1024 bytes, where every pointer occupies
4 bytes of storage.
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Fig. 2. A fragment of the DFA structure with n levels. The patterns beginning with
the same prefix are stored under the same final node (leaf).

If a final-state is reached, a potential signature match has been found. Con-
sequently, the offset where the match has been found is marked and all marked
offsets will be verified later by the CPU. The idea is to quickly weed-out the
dominant number of true negatives using the superior performance and high
parallelism of the GPU, and pass on the remaining potential true positives to
the CPU.

To utilize all streaming processors of the GPU, we exploit its data parallel
capabilities by creating multiple threads. An important design decision is how
to assign the input data to each thread. The simplest approach would be to
use multiple data input streams, one for each thread, in separate memory areas.
However, this will result in asymmetrical processing effort for each processor
and will not scale well. For example, if the sizes of the input streams vary, the
amount of work per thread will not be the same. This means that threads will
have to wait, until all have finished searching the data stream that was assigned
to them.

Therefore, each thread searches a different portion of the input data stream,
at the matching phase. To best utilize the data-parallel capabilities of the GPU,
we create a large number of threads that run simultaneously. Our strategy splits
the input stream in distinct chunks, and each chunk is processed by a different
thread. Figure 3 shows how each GPU thread scans its assigned chunk, using
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the underlying DFA state table. Although they access the same automaton, each
thread maintains its own state, eliminating any need for communication between
them.

A special case, however, is for patterns that may span across two or more
different chunks. The simplest approach for fixed string patterns, would be to
process in addition, n bytes, where n is the maximum pattern length in the
dictionary. Unfortunately, the virus patterns are usually very large, as shown
in Figure 4 for the ClamAV, especially when compared with patterns in other
pattern matching systems like Snort. Moreover, a regular expression may contain
the wild card character *, thus the length of the patterns may not be determined.
To solve this problem, we used the following heuristic: each thread continues
the search up to the following chunk (which contains the consecutive bytes),
until a fail or final-state is reached. While matching a pattern that spans chunk
boundaries, the state machine will perform regular transitions. However, if the
state machine reaches a fail or final-state, then it is obvious that there is no need
to process the data any further, since any consecutive patterns will be matched
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by the thread that was assigned to search the current chunk. This allows the
threads to operate independently and avoid any communication between them,
regarding boundaries in the input data buffer.

Every time a match is found, it is stored to a bit array. The size of the bit
array is equal to the size of the data that is processed at concurrently. Each bit in
the array represents whether a match was found in the corresponding position.
We have chosen the bit array structure, since it is a compact representation of
the results, even in the worst case scenario where a match is found at every
position.

3.3 Optimized Memory Management

The two major tasks of DFA matching, is determining the address of the next
state in the state table, and fetching the next state from the device memory.
These memory transfers can take up to several hundreds of nanoseconds, de-
pending on the traffic conditions and congestion.

Our approach for hiding memory latencies is to run many threads in paral-
lel. Multiple threads can improve the utilization of the memory subsystem, by
overlapping data transfer with computation. To obtain the highest level of per-
formance, we tested GrAVity to determine how the computational throughput
is affected by the number of threads. As discussed in Section 4.2 the memory
subsystem is best utilized when there is a large number of threads, running in
parallel.

Moreover, we have investigated storing the DFA state table both in the global
memory space, as well as in the texture memory space of the graphics card. The
texture memory can be accessed in a random fashion for reading, in contrast
to global memory, where the access patterns must be coalesced. This feature
can be very useful for algorithms like DFA matching, which exhibit irregular
access patterns across large data sets. Furthermore, texture fetches are cached,
increasing the performance when read operations preserve locality. As we will
see in Section 4.2, the usage of texture memory can boost the computational
throughput up to a factor of two.



3.4 Other Optimizations

In addition to optimizing the memory usage, we considered two other optimiza-
tions: the use of page-locked (or pinned) memory, and reducing the number of
transactions between the host and the GPU device.

The page-locked memory offers better performance, as it does not get swapped
(i.e. non-pageable memory). Furthermore, it can be accessed directly by the GPU
through Direct Memory Access (DMA). Hence, the usage of page-locked mem-
ory improves the overall performance, by reducing the data transferring costs
to and from the GPU. The contents of the files are read into a buffer allocated
from page-locked memory, through the CUDA driver. The DMA then, transfers
the buffer from the physical memory of the host, to the texture memory of the
GPU.

To further improve performance, we use a large buffer to store the contents of
many files, that is transferred to the GPU in a single transaction. The motivation
behind this feature, is that the matching results will be the same, whether we
scan each file individually or scanning several files back-to-back, all at once. This
results in a reduction of I/O transactions over the PCI Express bus.

4 Performance Evaluation

In this section, we evaluate our prototype implementation. First, we give a short
description of our experimental setup. We then present an overall performance
comparison of GrAVity and ClamAV, as well as detailed measurements to show
how it scales with the prefix length and the number of threads that are executing
on the GPU.

4.1 Experimental Environment

For our experiment testbed, we used the NVIDIA GeForce GTX295 graphics
card. The card consists of two PCBs (Printed Circuit Board), each of which is
equipped with 240 cores, organized in 30 multiprocessors, and 896MB of GDDR3
memory. Our base system is equipped with two Intel(R) Xeon(R) E5520 Quad-
core CPUs at 2.27GHz with 8192KB of L2-cache, and a total of 12GB of memory.
The GPU is interconnected using a PCIe 2.0 x16 bus.

We use the latest signatures set of ClamAV (main v.52, released on February
2010). The set consists of 60 thousand string and regular expression signatures.
As input data stream, we used the files under /usr/bin/ in a typical Linux
installation. The directory contains 1516 binary files, totalling about 132MB
of data. The files do not contain any virus, however they exercise most code
branches of GrAVity.

In all experiments we conducted, we disregarded the time spent in the initial-
ization phase for both ClamAV and GrAVity. The initialization phase includes
the loading of the patterns and the building of the internal data structures, so
there is no actual need to include this time in our graphs.
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Fig. 5. Sustained throughput for varying signature prefix. Higher number of threads
achieve higher performance as memory latencies are hidden. We demonstrate the effect
of different GPU memory types on performance. (a) uses global device memory to store
the DFA state table, where (b) uses texture memory.

4.2 Microbenchmarks

Figure 5 shows the matching throughput for varying signature prefix lengths.
We explore the performance that different types of memory can provide, by
using global device and texture memory respectively to store the DFA state
table. The horizontal axis shows the signature prefix length. We also repeated
the experiment using different number of threads. As the number of threads
increases, the throughput sustained by the GPU also increases. When using eight
millions threads, which is the maximum acceptable number of threads for our
application, the computational throughput raises to a maximum of 40 Gbits/s.

Comparing the two types of memory available in the graphics card, we ob-
serve that the texture memory significantly improves the overall performance by
a factor of two. The irregularity of memory accesses that DFA matching exhibits,
can be partially hidden when using texture memory. Texture memory provides
a random access model for fetching data, in contrast with global memory where
access patterns have to be coalesced. Moreover, texture fetches are cached, which
offers an additional benefit.

The total memory requirements for storing the DFA, independently of the
memory type, is shown in Figure 6. We observe that the total number of states of
the DFA machine is growing linearly to the length of the prefix. Using a value of
14 as a prefix length, results in a DFA machine that holds about 400 thousands
states. In our DFA implementation this is approximately 400MB of memory —
each state requires 1KB of memory.

4.3 Application Performance

In this section, we evaluate the overall performance of GrAVity. Each experiment
was repeated a number of times, to ensure that all files were cached by the
operating system. Thus, no file data blocks were read from disk during our
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cores offer less benefit than that of utilizing the GPU.

experiments. We have verified the absence of I/O latencies using the iostat(1)

tool.

Throughput In this experiment we evaluate the performance of GrAVity com-
pared to vanilla ClamAV. Figure 7 shows the throughput achieved for different
prefix lengths. The overall throughput increases rapidly, raising at a maximum
of 20 Gbits/s. A plateau is reached for a prefix length of around 10.

As the prefix length increases, the number of potential matches decreases, as
shown in Figure 9. This results to lower CPU post-processing, hence the overall
application throughput increases. In the next section, we investigate in more
detail the breakdown of the execution time.
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Execution Time Breakdown We measure the execution time for data trans-
fers, result transfers, CPU and GPU execution. We accomplish this by adding
performance counters before each task.

As expected, Figure 8 shows that for small prefix sizes most of the time is
dominated by the cost of the CPU, verifying the possible matches reported back
by the GPU. For example, for a prefix length equal to 2, approximately 95% of
the total execution time is spent on the CPU to validate the potential matches.
For a prefix length equal to 14, the corresponding CPU time results in just 20%
of the total execution time, and in actual time signifies a reduction of three

orders of magnitude, while the GPU consumes 54% of the total execution. As
the prefix length increases, this overhead decreases and the GPU execution time
becomes the dominant factor. For verification, in Figure 9 we plot the number
of potential matches reported in accordance with the signature prefix length.
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Fig. 10. Performance sustained by our pattern matching implementation on different
generation of GPU and CPU models.

4.4 Scaling Factor

To measure how our GPU pattern matching implementation has improved dur-
ing the evolution of GPU models, we used three additional older-generation
graphics cards. Specifically, we utilized a GeForce 8600GT, which was released
early on March 2007, a GeForce8800GT released on December 2007, and a
GeForce 9800GX2 that released 4 months later, on March 2008.

Figure 10 shows that in less than two years, the computational throughput
has raised 20 times, from about 2 Gbits/sec to over 40 Gbits/sec. For compar-
ison reasons, we also calculated and included the respective numbers of various
generations of CPUs.

4.5 Peak Performance

In the final experiment we explore the ideal performance our GPU implemen-
tation can achieve. For this reason, we created a large file containing the NULL

character, to ensure that no state transitions will be performed at the match-
ing phase. The automaton will remain always at the same state, which will be
cached. Moreover, no matches will be reported, that would trigger an expen-
sive memory write at the global device memory. In this “best-case” scenario,
our throughput reached an order of 110 Gbits/s. This demonstrated the top
end performance the hardware can support. GrAVity’s end-to-end performance
reaches a very respectable 20% of this upper bound.

5 Related Work

Multi-pattern matching algorithms is one of the core operations used by appli-
cations in many domains. In the networking area, the most important applica-
tions, that primarily rely on pattern matching, are intrusion detection systems
and malware scanners.
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Many approaches rely on the hardware implementation of pattern matching
algorithms, like FPGAs [20, 22, 10, 2], CAMs [24, 29, 23] and Network Proces-
sors [6, 7]. Most of these studies have focused primarily on network intrusion
detection systems, which are quite different from virus scanning applications [9].

Recently, however, several efforts have been made to improve the perfor-
mance of ClamAV [16, 9, 15, 14]. Many approaches rely on the simple, fast and
accurate filtering of the input data stream, as software implementations run-
ning on generic processors [16, 9], or more complex approaches using specialized
hardware [15, 14].

Recent software implementations have adapted Bloom filters for use in virus
scanning as a first-level filter before the exact pattern matching algorithm oc-
curs [9, 5]. A fragment of constant length is extracted from every signature and
inserted into a Bloom filter. At the scanning phase, a window of the same size
slides over the files to be examined, and its content at every position is tested
against the filter. A Bloom filter is the most compact structure that can store a
dictionary and is used to determine whether a string belongs to that dictionary
or not. A major drawback of Bloom filters, however, is that they cannot be used
for regular expressions matching. A possible solution is to select an invariant
fragment (i.e. a fixed byte sequence) from a wild-card containing signature and
put it in the filter. Unfortunately, the fact that the fragments have to be of the
same length, will shorten the hashing window to the shortest signature or frag-
ment, and will increase the false positive rate. Several approaches have been used
Bloom filters efficiently in specialized hardware, for example with FPGAs [8, 17,
4]. Hardware implementations provide better performance, although with a high,
and often prohibitive, cost for many organizations.

Besides specialized hardware solutions, commodity multi-core processors have
begun gaining popularity, primarily due to their increased computing power and
low cost. It has been shown that fixed-string pattern matching implementations
on SPMD processors, such as the IBM Cell processor, can achieve a computa-
tional throughput of up to 2.2 Gbits/s [19], while regular expression matching



up to 7.5 Gbits/s [13]. In the context of network intrusion detection systems,
graphics processors have been used to accelerate their performance [26, 27, 21,
11, 28, 25]. Specifically, work in [26, 27] significantly improved the performance
of Snort by offloading the string searching and regular expression matching op-
erations to the GPU. The work in this paper, exploits and extends some of those
ideas and applies them in a hybrid, GPU-CPU malware detection architecture,
with a drastic improvement in performance.

6 Conclusions

In this paper, we presented GrAVity, a massively parallel antivirus engine that
utilizes the GPU to offload the bulk of pattern and regular expression match-
ing from a popular antivirus system. Our system exploits the highly threaded
architecture of modern graphics processors, as well as the embarrassingly par-
allel nature of virus scanning to achieve end-to-end throughput in the order
of 20 Gbits/s. This result is 100 times faster than the unmodified ClamAV
running on a modern CPU. Our benchmarks also showed that our approach
completely offloads the CPU and frees it to perform other tasks. Finally, our
micro-benchmarks showed that it is possible to achieve throughput in the order
of 40 Gbits/s in cases where data is pre-cached on the graphics card, showing
that solving data transfer bottlenecks can lead to doubling of performance.

To achieve such high performance, we tuned our system and performed a
number of optimizations. Since virus signatures are both very long and more
numerous compared to other signature matching systems, like network intrusion
detection systems, we build our engine as a pre-filter, that uses prefixes of the
actual signatures. These prefixes are used to create the DFAs used in the actual
pattern matching on the GPU. Our architecture also takes advantage of the
physical memory hierarchies of graphics processors, as well as, bulk data transfers
using DMA.

As future work we plan to investigate how to port our engine to commercial
antivirus software, as well, other tools such as antispyware. In terms of archi-
tecture, we plan to overlap GPU and CPU matching phase, as right now our
system is serialized in that respect. Finally we plan on utilizing multiple GPUs
instead of a single one. Modern motherboards, such as the one we used in our
evaluation, support multiple GPUs on the PCI Express bus. In our case it would
be possible to utilize up to four such cards. Such a system would require a more
thorough investigation of communication and synchronization between multiple
GPUs.
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