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Abstract: Network Intrusion Detection Systems (NIDS) provide an important security 
function to help defend against network attacks. As network speeds and 
detection workloads increase, it is important for NIDSes to be highly efficient. 
Most NIDSes need to check for thousands of known attack patterns in every 
packet, making pattern matching the most expensive part of signature-based 
NIDSes in terms of processing and memory resources. This paper describes 
Piranha, a new algorithm for pattern matching tailored specifically for 
intrusion detection. Piranha is based on the observation that if the rarest 
substring of a pattern does not appear, then the whole pattern will definitely 
not match. Our experimental results, based on traces that represent typical 
NIDS workloads, indicate that Piranha can enhance the performance of a 
NIDS by 11% to 28% in terms of processing time and by 18% to 73% in terms 
of memory usage compared to existing NIDS pattern matching algorithms. 
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1. INTRODUCTION 

Network Intrusion Detection Systems (NIDSes) provide a powerful 
mechanism to defend against well-known attacks on a computer network or 
detect network abuse. NIDSes are mainly divided into two major categories: 
signature-based and anomaly detection. Anomaly-detection NIDS try to spot 
abnormal behavior on network based on statistics like rate of connections, 
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traffic overload or unusual protocol headers. On the contrary, the detection 
mechanism of a signature-based NIDS is based on a set of signatures, each 
describing a known attack. As an example, a signature taken from latest 
Snort, is   

alert tcp any any -> HTTP_SERVER 80 (content:"/root.exe"; nocase;) 

This signature instructs that if “/root.exe” is found inside the payload of a 
TCP packet that is originating from any host and any source port and is 
destined to an HTTP server on port 80, then an attack on the web server is 
taking place. While this signature requires full packet inspection, there exist 
simpler signatures that require only header lookups. Pattern matching inflicts 
a significant cost to the performance of a NIDS. Previous research results 
suggest that 30% of total processing time is spent on pattern matching13, 
while in some cases, like Web-intensive traffic, this percentage raises up to 
80%6. Apart from processing time, memory demands of a NIDS may reach 
at high levels due to rule-set growth. Although algorithms with low memory 
demands have been developed, their performance in comparison with 
algorithms that consume more memory is still poor. Given the fact that link 
speed increases every year, pattern matching evolves to a highly demanding 
process that needs special consideration. Minimizing the demands of pattern 
matching leaves headroom for further heuristics to be applied for intrusion 
detection, like anomaly detection or sophisticated preprocessors. 

In this paper, we present Piranha, a pattern-matching algorithm designed 
for and applied to a NIDS. Our experiments with Piranha implemented in 
Snort v2.2 indicate that Piranha is faster than existing algorithms by up to 
28% in terms of processing time, and requires up to 73% less memory. This 
improvement relies on the small number of collisions and the compact 
memory footprint of the algorithm. 

The rest of the paper is organized as follows: in Section 2 a description of 
existing state-of-the-art algorithms is provided, Section 3 depicts the Piranha 
algorithm, while Section 4 presents the performance of Piranha compared to 
other algorithms in various traffic scenarios and hardware platforms. Finally, 
our concluding remarks are discussed in Section 5. 

2. BACKGROUND 

In this section we describe how a content matching NIDS operates and 
summarize the key characteristics of pattern matching algorithms that have 
been recently used in intrusion detection. 
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2.1 Basic NIDS model 

A NIDS is usually designed as a passive monitoring system that reads 
packets from a network interface through standard system facilities, such as 
libpcap10. After a set of normalization passes (e.g., IP fragment reassembly, 
TCP stream reconstruction, etc.) each packet is checked against the NIDS 
rule-set. Some -rather old- NIDS organize their rule-set as a two-dimensional 
data-structure chain, where each element, often called a chain header, tests 
the input packet against a packet header rule. When a packet header rule is 
matched, the chain header points to a set of signature tests, including 
payload signatures that trigger the execution of the pattern matching 
algorithm. Pattern matching is the single most expensive operation of a 
NIDS in terms of processing cost. Latest versions of Snort (above version 
2.0) organize the rules in groups. Rules that check for the same destination 
port belong to the same group14. When a packet arrives, its destination port is 
used to find the appropriate group. Afterwards, multi-pattern matching is 
performed on patterns of the group in order to extract a set of rules that 
possibly match. Each rule of this set is then examined separately.  

In order to understand the interaction between pattern matching 
algorithm, rule-set and experimental workload, we briefly present some of 
the pattern matching algorithms that are commonly used in intrusion 
detection systems. 

2.2 Pattern matching algorithms 

A number of algorithms have been proposed for pattern matching in a 
NIDS. The performance of each algorithm may vary according to the case in 
which it is applied. The multi-pattern approach of Boyer-Moore is fast for a 
few rules, but does not perform well when used for a large set. On the 
contrary, Wu-Manber behaves perform well when used with large rule-sets. 
On the contrary, Wu-Manber behaves well on large sets, but its performance 
starts to degrade when short patterns appear in rules. E2xB is based on the 
idea that in most cases we have a mismatch and tries to filter out patterns 
that do not match. However, E2xB introduces additional preprocessing cost 
per packet, which is amortized only after a certain number of rules. In the 
following subsections a more detailed description for each algorithm is 
provided. 

2.2.1 The Boyer-Moore algorithm 

The most well-known algorithm for matching a single pattern against an 
input was proposed by Boyer and Moore4. The Boyer-Moore algorithm 
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compares the search pattern with the input, starting from the rightmost 
character of the search pattern. This allows the use of two heuristics that may 
reduce the number of comparisons needed for pattern matching (compared to 
the naive algorithm). Both heuristics are triggered on a mismatch. The first 
heuristic, called the bad character heuristic, works as follows: if the 
mismatching character appears in the search pattern, the search pattern is 
shifted so that the mismatching character is aligned with the rightmost 
position at which the mismatching character appears in the search pattern. If 
the mismatching character does not appear in the search pattern, the search 
pattern is shifted so that the first character of the pattern is one position past 
the mismatching character in the input. The second heuristic, called the good 
suffixes heuristic, is also triggered on a mismatch. If the mismatch occurs in 
the middle of the search pattern, then there is a non-empty suffix that 
matches. The heuristic then shifts the search pattern up to the next 
occurrence of the suffix in the pattern. Horspool8 improved the Boyer-Moore 
algorithm with a simpler and more efficient implementation that uses only 
the bad-character heuristic. Fisk and Varghese6 recently developed Set-Wise 
Boyer-Moore (SWBM), an algorithm based on Boyer-Moore concepts and 
operating on a set of patterns. SWBM was integrated in Snort and tested 
using a single traffic trace from an enterprise Internet connection. 

2.2.2 The E2xB algorithm 

E2xB is a pattern matching algorithm designed for providing quick 
negatives when the search pattern does not exist in the packet payload, 
assuming a relatively small input size (in the order of packet size)2,9. As 
mismatches are by far more common than matches, pattern matching can be 
enhanced by first testing the input (i.e., the payload of each packet) for 
missing fixed-size sub-strings of the original signature pattern, called 
elements. The collisions induced by E2xB, i.e., cases with all fixed-size sub-
strings of the signature pattern showing up in arbitrary positions within the 
input, can then be separated from the actual matches using standard pattern 
matching algorithms, such as Boyer-Moore4. The small input assumption 
ensures that the rate of collisions is reasonably small -experiments have 
shown collision rates of 10% in the worst case-. In the common case, 
negative responses can be obtained without resorting to general-purpose 
pattern matching algorithms. The E2xB algorithm was evaluated with traffic 
traces from diverse environments, including traces containing attacks, traces 
with normal web traffic, and WAN traffic traces from a local ISP. 
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2.2.3 The Wu-Manber algorithm 

The most recent implementation of Snort uses a simplified variant of the 
Wu-Manber multi-pattern matching algorithm16, as discussed by Snort 
developers14. The “MWM” algorithm is based on a bad character heuristic 
similar to Boyer-Moore, but uses a one or two-byte bad shift table 
constructed by pre-processing all the patterns instead of only one. MWM 
performs a hash on the two-character prefix of the current input to index into 
a group of patterns, which are then checked starting from the last character, 
as in Boyer-Moore. The performance of MWM was originally measured 
using text files and various sets of patterns. The first attempt to measure 
MWM as the basic algorithm for pattern matching in a NIDS was performed 
in recent Snort implementation14. The results of previous studies14 show that 
Snort is much faster than previous versions that used Set-Wise Boyer-Moore 
and Aho-Corasick1. 

3. IMPLEMENTATION 

The Piranha algorithm is based on the idea that if we find the rarest 4-
byte substring of a pattern inside the packet payload, then we assume that 
this pattern matches. Each pattern is now represented by its least popular 4-
byte sequence, where popular reflects the number of times that a specific 
substring exists in all patterns. For all the instances of the rare substring, 
Snort is instructed to check the corresponding rule. Piranha itself can only 
handle patterns with length greater or equal to 4. For completeness, patterns 
with length less than 4 are handled separately. 

3.1 Preprocessing  

Piranha treats every byte-aligned pattern as a set of 32-bit sub-patterns. 
For example, the pattern “/admin.exe” (R1) is considered as the set of its 32-
bit byte-aligned sub-patterns, i.e.,“/adm”, “admi”, “dmin”, “min.”, “in.e”, 
“n.ex” and “.exe”. The 32-bit partitioning was chosen as the use of integers 
results to faster operations. Pattern matching can then be formulated in terms 
of an AND operation. Every pattern is represented by a gate. The gate has as 
many inputs as the number of its 32-bit sub-patterns. Each input represents 
whether the 32-bit sub-pattern has appeared in the payload or not. The gate 
for pattern R1 can be seen on the top-right part of Figure 1 with all its sub-
patterns constituting the inputs of the gate. Initially, all inputs are set to zero, 
and are being switched on based on the sequences seen on the packet. 
However, the output must not be regarded as an exact match.  
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Figure 1. An example of index table and gates for two patterns. When all the inputs of a gate 
are switched on, then the pattern is possibly matched 

For example, if the packet payload is “/admAAAdmin.exe”, then, despite the 
fact that all 4-byte sequences for R1 have appeared, the pattern itself does 
not match. Each time the output of the gate is switched on, we consider it as 
collision and Snort is instructed for further inspection. In order to find fast 
which inputs to switch on, an index table is maintained. The index table 
keeps for all 4-byte sequences a list of all patterns that contain them. For 
example, if we assume that we only have the patterns “/admin.exe” (R1) and 
“/admin.sh” (R2), a view of the table is displayed in Figure 1. Sequences 
“/adm”, “admi”, “dmin”, and “min.” appear in both patterns, while “.exe”, 
“in.e”, and “n.ex” exist only in R1, and “in.s” and “n.sh” only in R2. Each 
time a node of index table is reached then the appropriate input is switched 
on. As an example, if the payload is “min.exe”, we first access the “min.” 
entry of index table and we switch on the “min.” inputs for R1 and R2, 
afterwards the “in.e” entry and switch on the “in.e” input for R1, then we 
access the “n.exe” entry and switch on the input for R1 and finally the “.exe” 
entry is traversed. The performance of Piranha for a subset of our packet 
traces, in terms of running time and collisions per packet, is displayed in 
Table 1 under the “full gates” column.  



Piranha: Fast and Memory-efficient Pattern Matching for IDS 7
 

 

Figure 2. Optimized view of index table 

Although gates present a low rate of collisions, their performance is poor 
as a lot of steps and transitions are needed in order to take a decision whether 
a pattern matches or not. In a typical case, the index table is firstly accessed, 
then the appropriate input is switched on and then the whole gate is checked 
if all inputs are switched on. In our effort to reduce the number of steps, and 
consequently, memory accesses, an optimization phase takes place. The 
optimization phase involves the procedure of selecting one input for each 
gate, a representative sequence. The rarest sequence is chosen as 
representative. It is defined as the sequence found in the least number of 
rules and can be found through the index table by counting the number of 
rules that is contained in. All other inputs are removed from the gate as well 
as the corresponding nodes from the index table. For example, trying to 
optimize our previous example we keep sequence “n.ex” as representative 
for pattern R1 and “n.sh” for R2. The optimized view of the index table is 
illustrated in Figure 2. After the optimization phase, every gate has only one 
input, and thus, it can totally be removed (output is equal to input), as we can 
use the index table for the searching phase -if a node of the index table is 
reached then a possible match is triggered-. 

The effect of optimization is shown in Table 1, in terms of running time 
and collisions. The “full gates” column represents the unoptimized case of 
Piranha, and the “representative sequence” refers to the optimized case. 
Although collisions per packet increase as now only one input triggers 
possible match, the performance increases due to decrease of steps and 
compactness of memory footprint. Performance is increased by up to 36% 
even if collisions are two to three times more.  

Table 1. Effect of optimizing gate inputs. Collisions increase but running time decreases as 
less steps and memory are required 
 Full gates Representative sequence 
 Running time Collisions Running time Collisions 
forth.web 37.71 0.61 24.06 1.65 
forth.tr 36.14 0.29 27.60 0.67 
forth.tr2 34.58 0.29 27.04 0.63 
ideval2 12.07 0.33 9.58 1.06 
ideval3 13.16 0.25 10.68 0.93 
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With further optimization during the searching phase as it is described in 
Section 3.2, collisions and running time drop significantly. 

3.2 Searching 

The searching phase of Piranha is straightforward. For each 4-byte 
sequence of the packet payload, the index table is consulted in order to find 
the patterns that contain this sequence. All these patterns are then sent to 
Snort for further inspection. Following our previous example, if the payload 
is “/login.sh”, we have to check sequences “/log”, “logi”, “ogin”, “gin.”, 
“in.s” and “n.sh”. According to the index table, “n.sh” is found in pattern R2, 
so we assume that R2 is matched. The rest of the sequences are not 
contained in any pattern so no checks are necessary. Such an approach 
would trigger further inspection multiple times for each packet, as shown in 
Table 2 (“No check” case). We observe that, in the average case, in an 
unoptimized search we trigger one rule per packet, which is prohibitive in 
terms of performance. In our effort to reduce collisions, we perform a trivial 
check before the decision that a pattern is matched. The last two characters 
of the pattern are checked against the corresponding two characters in the 
payload, and if the check succeeds then further inspection is triggered. The 
effect of this optimization is summarized in Table 2. In some cases, up to 
75% of triggers are eliminated while the minimum reduction reaches 50%.  

4. EXPERIMENTS 

We evaluated the performance of Piranha against E2xB and MWM 
algorithms in Snort 2.2 using a set of packet traces. All Snort preprocessors 
were disabled. 

 

Table 2. Collisions per packet without and with checking last 2 bytes of pattern against 
payload 
 No check Check last 2 bytes 
forth.web 1.65 0.62 
forth.tr 0.67 0.24 
ideval2 1.06 0.32 
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Figure 3. Effect of hash-table size on running time 

4.1 Environment 

All the experiments were conducted on a machine equipped with a 
Pentium 4 processor running at 2.80GHz, 8KB of L1 cache, 512KB of L2 
cache, and 1GB of main memory. The host operating system was Linux 
(kernel version 2.4.0, Redhat 9.0). We used five sets of packet traces from 
diverse environments. The first set consists of a full packet trace containing 
Web traffic (forth.web), generated by concurrently running a number of 
recursive wget requests on popular portal sites from a host within the 
FORTH network. The second set contains two full packet traces (forth.tr) 
and forth.tr2) collected in a local area network at Institute of Computer 
Science inside FORTH. The third set includes a full-packet trace from the 
DEFCON “capture the flag” data-set (defcon.02). This trace contains 
numerous intrusion attempts. The fourth set consists of two full-packet traces 
(ideval2 and ideval3) which were collected during the DARPA evaluation 
tests at MIT Lincoln Laboratory. Finally, a header-only trace with uniformly 
random payload (ucnet00) collected on the OC3 link connecting the 
University of Crete campus network (UCNET) to the Greek academic 
network (GRNET)5 was used. 

 

4.2 Effect of hash-table size 

A complete index table of 32-bit-long patterns would normally contain 
232 entries, an outrageous number in terms of memory usage. In order to 
keep the memory footprint as small as possible, the index table was 
implemented as a hash-table. Since the memory footprint and locality of 
accesses is critical to the performance of the algorithm, we determined the 
optimal size of the hash-table by obtaining the running time for different 
sizes and for all available traces.  
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Figure 4. Running time for E2xB, Piranha and MWM for patterns with length greater or equal 
to 4 
 

Results are summarized in Figure 1. Running times for each set are 
presented normalized to the lowest value. The time was measured using the 
time facility of the operating system. Small hash-tables suffer from conflicts 
and consequently longer chains have to be traversed in order to find the 
correct index. A large hash-table, on the contrary, has fewer conflicts but for 
every access a performance penalty is paid due to poor cache behavior. We 
observe that optimal size of the hash table for most of the traces is around 
16KB and this is the size we used for all our experiments presented in the 
paper. 

4.3 Comparison against other algorithms 

We compared Piranha against MWM14 and E2xB2,9 on all available 
traces. In our experiments, we measured running time in user space (kernel 
time was negligible). Results are presented in Figure 4. Times are presented 
normalized against the running time of Piranha algorithm.  

The performance of Piranha is consistently better compared to other 
algorithms. Improvement ranges between 10 and 23.50%, with the results 
remaining the same for the rest of the traces that are not displayed in Figure 
4. We also compared our algorithm with AC-Banded11, an optimized 
implementation of Aho-Corasick1, but running time of AC-Banded was two 
to four times the time of our algorithm. Results in Figure 4 are for patterns 
with length greater or equal to four, as four is the length that can be natively 
handled by Piranha. For completeness reasons, the case of small pattern was 
also implemented. Small patterns impose a performance bottleneck for 
Piranha and MWM as well as E2xB. MWM can natively handle patterns with 
length greater or equal to two while patterns with length one are examined 
separately. The overhead that small patterns impose in terms of running time 



Piranha: Fast and Memory-efficient Pattern Matching for IDS 11
 
can be seen on Table 3. In average case, running time was decreased by 25% 
for Piranha and 20% for MWM. The effect on E2xB is smaller as it is not 
dependent to pattern length but proportional to the number of patterns. In the 
last two columns of the table we can observe the performance benefit of 
Piranha against MWM and E2xB for all pattern lengths. Despite the 
performance bottleneck, our algorithm still performs better for all available 
traces, except the case of defcon.02 trace where improvement is marginal. 
However, our main contribution is focused on patterns with a fair enough 
large size as only 3% of patterns have length less than four.  
Piranha does not only perform better in terms of processing time but also in 
terms of memory usage. While MWM requires 45MB of memory to process 
the full rule-set, AC-Banded 96MB and Aho-Corasick 140MB, Piranha 
consumes only 37MB. Efforts have been made recently in order to develop 
algorithms with low memory consumption. Tuck et al.15; have developed 
two modified versions of Aho-Corasick, AC-Bitmap and AC-Path, that 
reduce memory usage. AC-Bitmap needs 20MB memory while AC-Path 
only 15MB. However, such algorithms present very high processing time. 
Comparing Piranha with AC-Bitmap and AC-Path, we observed that they 
need, in average, three to four times more processing time. Snort also comes 
with SFKSearch, an algorithm that requires only 14MB of memory, but its 
performance compared to others is poor - three to four times more 
processing time against Piranha -. The tradeoff between memory usage and 
processing time can be seen on Figure 5. Algorithms with low memory 
usage need three to four times more processing time, while algorithms with 
high memory usage present high processing capacity.  Although the 
assumption that low memory means high processing time cannot be 
generalized, there are strong indications that this tradeoff might hold for 
other algorithms that are not discussed here. 

 

Table 3. Effect of small-patterns on running time 
 Piranha MWM E2xB   
 pattern length pattern length pattern length Piranha 

vs. MWM 
Piranha  

vs. E2xB 
 >=4 all >=4 all >=4 all % % 
forth.web 21.05 30.17 25.32 33.59 28.86 34.12 10.18 11.57 
forth.tr 23.78 30.78 30.80 35.65 29.80 31.18 13.66 1.28 
forth.tr2 26.55 30.37 30.23 36.12 29.91 30.46 15.91 0.29 
ideval2 8.49 11.36 9.68 12.70 10.84 13.25 10.55 14.26 
ideval3 9.88 12.89 11.26 14.58 12.69 15.25 11.59 15.47 
defcon.02 7.06 9.91 8.99 9.97 9.42 9.96 0.60 0.50 
defcon.03 7.20 8.74 8.59 9.20 8.18 8.99 5.00 2.78 
ucnet00 3.11 3.59 3.48 4.21 3.59 3.81 14.72 5.77 
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Figure 5. Memory usage against processing time 

4.4 Evaluation on different architectures 

We evaluated the performance of Piranha on different hardware 
architectures. Our testing environment, besides the machine described in 
Section 4.1, consists of a Pentium Xeon 2.4 GHz with 8KB L1 cache, 
512KB L2 cache and 512MB main memory, an AMD Athlon MP 1.8GHz 
with 128KB L1 cache, 256KB L2 cache and 512MB main memory and a 
Pentium 3 running at 600 MHz with 8KB L1 cache, 256KB L2 cache and 
512MB main memory. Results are presented in Figure 6. Running time is 
normalized against the time of Piranha running on P4 at 2.8GHz.  

Independent of the underlying hardware platform, Piranha performs 
better for all traces. As processor clock speed decreases, performance of both 
algorithms decreases as expected. However, the performance gap seems to 
decrease with the clock speed for specific traces while for others it remains 
constant. On Pentium Xeon 2.4GHz, improvement waves between 7.8% and 
18.8% while on Pentium 3 600MHz between 10.86% and 14.83% (leaving 
out the ucnet00 trace where improvement is marginal). Similar results apply 
to the AMD Athlon architecture, where improvement is ranged between 
7.32% and 18.21% (again ucnet00 trace is omitted).  
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Figure 6. Performance of Piranha and MWM on different architectures 
 

4.5 Performance under attack 

Intrusion detection systems are themselves subject to being attacked. 
Some types of attack try to evade NIDS by exploiting weaknesses in 
protocol handling, like IP defragmentation or TCP reassembly7,12. Other 
attacks aim at overloading the detection engines by exploiting weaknesses in 
the internal algorithms used, in our case pattern matching. The attacker sends 
packets with carefully crafted payload in order to force the pattern matching 
engine to spend more processing time than it would require for an innocent 
packet. Most of the traffic is then dropped by the NIDS, including packets 
containing attack, giving the attacker the chance to evade detection. Our 
previous work on such attacks has shown that the processing time of Snort 
can be raised by up to 25 times3. Although the worst case scenario for each 
algorithm and the Snort itself is extremely difficult to be generated, we 
provide some hints on how a NIDS can be heavily overloaded. For 
performance reasons, Snort firstly performs the multi-pattern matching and 
then for all possible matches the whole rule is checked: header processing 
and exact string matching for all patterns that the rule contains14. Examining 
the groups of rules that are processed during packet inspection, it can be 
observed that rule  

alert tcp any any  any any (ack:0; flags:SFU12; 
content:"AAAAAAAAAAAAAAAA"; depth:16;) 

is found in all groups as it applies to all source and destination ports. That 
means that for all packets examined, Snort will try to locate the pattern 
``AAAAAAAAAAAAAAAA'' and for all possible matches will check the rest of 
the rule. In our example, after the pattern matching phase the 
acknowledgment number and the TCP flags will be verified. We constructed 
an attack trace by taking the headers of the forth.web and placing only "A" in 
the payload. In that way, in every offset of the payload Snort finds that 
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pattern and checks for the rest of the rule. However, the header of the 
packets is normal (no special TCP flags are turned on and acknowledgment 
number in non-zero) and thus the rule is never matched.  
Forcing Snort to generate matches and checks in every offset is very 
expensive as it can be seen on Table 4. We observe that processing time is 
raised by 3 to 15 times and that all algorithms are subject to payload attacks, 
as the way Snort performs detection is exploited and not the nature of the 
algorithms. Such overload factors can provide the attacker the ability to hide 
his attack among legitimate traffic. Other payloads were also crafted, like 
payload including only “a”. As the packet payload is capitalized, possible 
matches are also generated and the overloading still takes place. In the case 
of MWM, running time is increased further as there are some patterns that 
start with “aa” and trigger more inspections on the internal structures of 
MWM. The Aho-Corasick-like algorithms try -as an optimization- to verify 
their match by calling memcmp() for pattern against the payload before 
forcing Snort to check the whole rule. The cost of memory-comparing is 
increasingly high as in each offset a comparison is performed. However, 
there are some cases where a specific payload can cause Piranha to generate 
collisions in most of the payload offsets but Aho-Corasick-like algorithms 
are not affected. This payload can be made by replacing the last character of 
“AAAAAAAAAAAAAAAA” pattern with another character, like “B”. Piranha 
decides that pattern matches only by seeing the appearance of an “AAAA” 
but the whole pattern is not really matched. Aho-Corasick algorithm detect 
that the whole pattern cannot be matched so their time remains practically 
the same. As Table 4 shows, only Piranha and MWM suffer from this 
payload attack. Focusing on the worst overall performance (the “worst 
overall” column) among all attacks described above, Piranha needs 3 times 
less running time than other algorithms. 

Table 4. Completion time and overhead factor (attack completion time / original completion 
time) for different attack payloads. “Time” denotes completion time and “factor” denotes 
overhead factor 
 Packet payload  
 Origi-

nal 
AAAAA… aaaaa… AAA…B… Worst 

overall 
 Time Time Factor Time Factor Time Factor  
Piranha 21.94 120.01 5.46 118.50 5.40 91.47 4.16 120.01 
MWM 25.91 233.73 9.02 376.72 14.53 204.88 7.90 376.72 
AC 35.71 417.72 11.69 361.45 10.12 28.98 0.81 417.72 
AC-path 81.59 357.84 4.38 212.62 2.60 78.81 0.96 357.84 
AC-Bitmap 72.87 409.74 5.62 241.88 3.31 110.65 1.51 409.74 
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5. CONCLUDING REMARKS 

We have presented the design of Piranha, a novel pattern matching 
algorithm for NIDS and evaluated its performance under various network 
traffic characteristics using a diverse set of packet traces. Our comparison 
against existing algorithms shows that an improvement of up to 28% can be 
achieved. The improvement is due to its quick decisions on which patterns 
may match and to its compact memory footprint which infers good cache 
behavior. Our results on different architectures indicate that Piranha 
performs consistently better, with the performance gain increasing along 
with processor speed. Furthermore, we have concluded to some general 
remarks for pattern matching on NIDS: small patterns inflict a significant 
performance overhead that needs to be examined carefully, and cache-
conscious programming of a NIDS pattern-matching algorithm is a key 
element to its performance. 
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